

MCCS LMC Prototype documentation

This project is developing the Local Monitoring and Control (LMC) prototype for the Square Kilometre Array [https://skatelescope.org/].

Contents:

	Getting started
	Set up your development environment

	API
	MCCS Master

	MCCS Subarray

	MCCS Station

	MCCS Station Beam

	MCCS Tile

	MCCS Antenna

	control_model

	utils

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Set up your development environment

Two approaches to setting up a development environment are documented
below. One is the “default” option currently documented in the
SKA software developer portal [https://developer.skatelescope.org/]. The other is our “recommended”
approach.

	(The Default approach) In this approach, you will create an Ubuntu
18.04 virtual machine using VirtualBox (though you could do the same
on a physical machine), then use an Ansible playbook to install Tango.

	In this approach, your system has everything you need to run and
test your code.

	However we have found it to be quite brittle. You wouldn’t want to
fiddle with the settings, lest things go wrong. And when they do go
wrong, they can be very hard to debug.

	(The Recommended approach) Develop against the SKA Docker images. In
this approach, you will install Docker, and use the SKA Docker image
for testing code.

	In this approach, your system does not have Tango installed, so you
cannot run and test your code locally.

	Because you don’t be running your code locally, you have flexibility
in how you set your local system up. The only real requirement is
Docker.

	You will be testing your code in a Docker container running the
standard SKA docker image, so you don’t need to worry that your code
might not port to other SKA environments.

	The Docker image will be kept up to date; you don’t need to worry
about updating it yourself.

The approach documented below uses an Ubuntu 20.04 image, with Visual
Studio Code (VScode) as an IDE. VScode integrates very well with
Docker.

The SKA software developer portal way

	Follow the instructions on the Tango Development Environment set
up [https://developer.skatelescope.org/en/latest/tools/tango-devenv-setup.html] page.

	Set up your itango docker container to mount your host working
directory. This will allow you to launch locally hosted code within
the itango container. To do this, edit
/usr/src/ska-docker/docker-compose/itango.yml and add the
following lines under the itango service definition:

volumes:
 - ${HOME}:/hosthome:rw

	Clone our GitLab repo [https://gitlab.com/ska-telescope/ska-low-mccs.git].

	Verify your setup:

$ cd /usr/src/ska-docker/docker-compose
$ make start itango #not needed if it already shows in "make status"
$ docker exec -it -e PYTHONPATH=/hosthome/ska-logging:/hosthome/lmc-base-classes/src \
 itango python3 \
 /hosthome/ska-low-mccs/src/ska/mccs/MccsMaster.py -?
usage : MccsMaster instance_name [-v[trace level]] [-nodb [-dlist <device name list>]]
Instance name defined in database for server MccsMaster :
$ docker exec -it -e PYTHONPATH=/hosthome/ska-logging:/hosthome/lmc-base-classes/src \
 itango tango_admin --add-server MccsMaster/01 MccsMaster lfaa/master/01
$ docker exec -it -e PYTHONPATH=/hosthome/ska-logging:/hosthome/lmc-base-classes/src \
 itango python3 \
 /hosthome/ska-low-mccs/src/ska/mccs/MccsMaster.py 01
1|2020-03-13T05:27:15.844Z|INFO|MainThread|write_loggingLevel|SKABaseDevice.py#490|tango-device:lfaa/master/01|Logging level set to LoggingLevel.INFO on Python and Tango loggers
1|2020-03-13T05:27:15.845Z|INFO|MainThread|update_logging_handlers|SKABaseDevice.py#169|tango-device:lfaa/master/01|Logging targets set to []
1|2020-03-13T05:27:15.846Z|INFO|MainThread|init_device|SKABaseDevice.py#399|tango-device:lfaa/master/01|No Groups loaded for device: lfaa/master/01
1|2020-03-13T05:27:15.846Z|INFO|MainThread|init_device|SKABaseDevice.py#401|tango-device:lfaa/master/01|Completed SKABaseDevice.init_device
Ready to accept request

(Recommended) The Docker way

	You will need an Ubuntu 20.04 physical or virtual machine.

	These instructions assume Ubuntu 20.04, but you could adapt them to
a different Ubuntu version, a different Linux flavour, or even a
different operating system such as Windows. (If you adapt these
instructions to a different system, please consider contributing to
this documentation.)

	Install Docker CE. Unfortunately you can’t just
sudo apt install docker because that would install a Canonical
build of Docker named Docker.io, and this is not recommended. We’ll
need to work a little harder to install Docker CE. We can use apt
but first we need to add the Docker apt repository, and in order to
do that we will need to install the Docker repo public key, and these
steps will themselves require installation of packages:

$ sudo apt install apt-transport-https ca-certificates curl gnupg-agent software-properties-common
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
$ sudo add-apt-repository "deb [arch-amd64] https://download.docker.com/linux/ubuntu #(lsb_release -cs) stable"
$ sudo apt-get update
$ sudo apt install docker-ce docker-ce-cli

	Test your install:

$ sudo docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
0e03bdcc26d7: Pull complete
Digest: sha256:6a65f928fb91fcfbc963f7aa6d57c8eeb426ad9a20c7ee045538ef34847f44f1
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

	At this point you can only run this command as sudo, because you are
not a member of the docker group. The docker group is created but it
is empty. Add yourself to the docker group:

$ sudo usermod -aG docker $USER

	If you are running on a virtual machine, you should restart the VM
now. If you are on a physical Ubuntu machine, you must at least log
out and log back in. Then verify that you can run docker without
sudo:

$ docker run hello-world

	Is git installed? Try

$ git --version

and if the command is not found then

$ sudo apt install git

	Set up git:

$ git config --global user.name "Your Name"
$ git config --global user.email "youremail@domain.com"

This is probably a good time to set up commit-signing too. Follow the
instructions at the SKA Working with Git [https://developer.skatelescope.org/en/latest/tools/git.html] page.

	Clone our repo:

$ cd ~
$ git clone https://gitlab.com/ska-telescope/ska-low-mccs.git

	Install Visual Studio Code (hencefort “VScode”). This step is easy:
just install it via the “Ubuntu Software” app.

	Open VScode. Choose “Open folder…” and select the folder for our
repo. You should see the contents of our repo open into your
sidebar.

	If you don’t: there is a column of icons along the left-hand side
that controls which sidebar you are seeing. Click on the first
one. Now you should set the contents of our repo in the sidebar.

	Click on the “Extensions” sidebar icon (it’s the one that looks like
a square jigsaw puzzle.) Search for and install “Remote-Containers”.

	Once the extension is installed, you should see a pop-up box telling
you that it has detected a .devcontainers folder in our repo, and
asking if you would like to reload the repo in a remote container.
Choose yes. You’ll see a popup message that it is “Starting with Dev
Container”.

	If you left it too long and the pop-up disappeared, then
<Ctrl-Shift-P> is your friend: it opens a search box for all of
the many commands supported by VScode. Type “Remote” and you will
find an option along the lines of “Rebuild and reopen in
container”.

	The first time you do this, it will take a very long time, because
the Docker image has to be downloaded. Once downloaded, the image
will be cached, so it will be much faster in future.

	If you click on the message box, it will open a terminal showing
you that things are happening. Go have a cup of tea.

	You’re ready to develop!

	The other sidebar you need to know about is the git sidebar. This
sidebar helps you keep track of git status and perform git
commands. For example, to make a commit, simply stage the
edited files that you want to commit (the “+” button), provide a
message in the message box, and hit the commit (tick) button. For
more complex git stuff like stashing, rebasing, etc, it might be
possible to do it through the GUI, but you might still find it
easier to do it in the terminal.

API

Contents:

	MCCS Master

	MCCS Subarray

	MCCS Station

	MCCS Station Beam

	MCCS Tile

	MCCS Antenna

	control_model

	utils

MCCS Master

MCCS Subarray

MCCS Station

MCCS Station Beam

MCCS Tile

MCCS Antenna

control_model

utils

	
ska.low.mccs.utils.tango_raise(msg, reason='API_CommandFailed', severity=tango.ErrSeverity.ERR, _origin=None)

	Helper function to provide a concise way to throw tango.Except.throw_exception

Example:

class MyDevice(Device):
 @command
 def some_command(self):
 if condition:
 pass
 else:
 tango_throw("Condition not true")

	Parameters

	
	msg ([type [https://docs.python.org/3/library/functions.html#type]]) – [description]

	reason (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – the tango api DevError description string, defaults to
“API_CommandFailed”

	severity (tango.ErrSeverity, optional) – the tango error severity, defaults to tango.ErrSeverity.ERR

	_origin (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – the calling object name, defaults to None (autodetected)
Note that autodetection only works for class methods not e.g.
decorators

	
ska.low.mccs.utils.call_with_json(func, **kwargs)

	Allows the calling of a command that accepts a JSON string as input,
with the actual unserialised parameters.

	Parameters

	
	func – the function to call

	kwargs – parameters to be jsonified and passed to func

	Ptype func

	callable

	Ptype kwargs

	any

	Returns

	the return value of func

	Example

	Suppose you need to use MccsMaster.Allocate() to command
a master device to allocate certain stations and tiles to a
subarray. Allocate() accepts a single JSON string argument.
Instead of

parameters={“id”: id, “stations”: stations, “tiles”: tiles}
json_string=json.dumps(parameters)
master.Allocate(json_string)

save yourself the trouble and

	call_with_json(master.Allocate,
	id=id, stations=stations, tiles=tiles)

	
class ska.low.mccs.utils.json_input(schema_path=None)

	Method decorator that parses and validates JSON input into a python
object. The wrapped method is thus called with a JSON string, but
can be implemented as if it had been passed an object.

If the string cannot be parsed as JSON, an exception is raised.

	Parameters

	schema_path – an optional path to a schema against which the
JSON should be validated. Not working at the moment, so leave it
None.

	Ptype

	string

	Raises

	
	FileNotFoundException – if no file is found at the schema
path provided

	json.JSONDecodeError [https://docs.python.org/3/library/json.html#json.JSONDecodeError] – if the file at the specified schema
path is not valid JSON

	Example

	Conceptually, MccsMaster.Allocate() takes as arguments a
subarray id, an array of stations, and an array of tiles. In
practice, however, these arguments are encoded into a JSON
string. Implement the function with its conceptual parameters,
then wrap it in this decorator:

@json_input
def MccsMaster.Allocate(id, stations, tiles):

The decorator will provide the JSON interface and handle the
decoding for you.

Index

 C
 | J
 | T

C

 	
 	call_with_json() (in module ska.low.mccs.utils)

J

 	
 	json_input (class in ska.low.mccs.utils)

T

 	
 	tango_raise() (in module ska.low.mccs.utils)

 nav.xhtml

 Table of Contents

 		
 MCCS LMC Prototype documentation

 		
 Getting started

 		
 Set up your development environment

 		
 The SKA software developer portal way

 		
 (Recommended) The Docker way

 		
 API

 		
 MCCS Master

 		
 MCCS Subarray

 		
 MCCS Station

 		
 MCCS Station Beam

 		
 MCCS Tile

 		
 MCCS Antenna

 		
 control_model

 		
 utils

_static/plus.png

_static/file.png

_static/minus.png

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

